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s discussed in [1] and [2], the 
key future application domains 
for control systems are very broad,  

and the systems are likely to be very com-
plex. In addition, for control research 
to have a large impact on those prob-
lems, there will likely be less emphasis 
placed on mathematical theory applied  
to abstract models and, instead, more 
emphasis on dealing with the reali-
ties (nonlinearity, noise, and model-
ing errors/uncertainty) of the systems 
under control. The system complexity 
could also require a larger focus on the 
design to meet performance goals, using 
techniques such as online optimization, 
rather than proving stability.

The complexity of the systems and 
the decision-making processes involved 
suggest the need for a fresh look at the 
future of controls curriculum, although 
it is not discussed much in [1]. Future 
interest is on large-scale systems, for 
which models might not be available 
and/or easily constructed. Furthermore, 
many of the systems of interest involve 
connected, distributed subsystems with 
numerous subcomponents, such as the 
network in communication systems; the 
sensors in perception-based systems; 
and complex, possibly poorly known, 
time-varying dynamics. This educa-
tional approach should also provide a 
more broadly applicable perspective of 
control systems as being a sequential 
decision-making process that involves 
feedback and decision making under 
uncertainty, with objectives that focus 
on performance, stability, resilience, as 
well as cost.

These goals differ significantly 
from the traditional focus on gradu-
ate-level controls that dwell on linear 

state-space models, with lengthy dis-
cussions of observability, controllabil-
ity, zeroes, and model representations; 
control design and weight selection for 
linear quadratic regulator (LQR) con-
trol; estimator design for systems im-
pacted by Gaussian noise; and optimal 
control design using linear-quadratic 
Gaussian (LQG) control. There is a 
lot of useful mathematical training in 
learning and interpreting these results, 
but the emphasis in the coursework 
likely leaves the impression that the re-
sults are more broadly applicable than 
they are in real life. Real-world control 
problems are complex and “messy,” 
and as they are predicated on the as-
sumption of an accurate linear model, 
these techniques typically cannot han-
dle that complexity. Although nonlin-
ear and/or adaptive control courses are 
typically offered beyond these tradi-
tional state-space courses, the solutions 
usually do not scale up to the problem 
complexity of interest.

To address these future research 
needs, controls courses should focus 
more on online numerical solutions  
of optimal control techniques. Tech-
niques of interest include online op-
timization-based approaches such as 
differential dynamic programming 
[3], iterative LQR [4], and iterative LQG  
(iLQG) [5], which provide approximate 
solutions using online iterative reopti-
mization. These approaches typically 
consist of three steps: compute deriva-
tives along a given nominal trajectory, 
a backward pass to update the value 
function estimates, and then a forward 
pass to compute a new estimate of the 
best state trajectory. These techniques 
require a significant amount of compu-
tation (iLQG is comparable to a Gauss–
Newton Hessian approximation), but 
those calculation are tractable for many 

systems of interest, given the central 
processing units and graphics process-
ing units currently available. 

While strong statements can be made 
about these algorithms for linear systems 
with quadratic costs, they can also be ap-
plied to more complex cases (nonlinear 
dynamics and nonquadratic costs), al-
though convergence guarantees are lost. 
Educational objectives here would be 
to ensure that the students are aware of 
what is lost in these more general cases 
and the significance of what is lost. It is 
of interest to note that similar material 
was covered in an optimal control course 
I took in the late 1980s based on [6], but, 
given the limited computational resourc-
es available at that time, the approach 
seemed unrealistic for the mechanical/
aerospace systems of interest. Then, 
over time, that material was replaced 
with the mu analysis and synthesis that 
formed the main components of the ad-
vanced control material covered in the 
1990s [7]. However, it is interesting to 
note that, at least at the Massachusetts 
Institute of Technology, neither compo-
nents is currently covered in depth in 
the course material.

Further topics of interest include 
optimization-based control using model 
predictive control (MPC) [8]–[11]. For 
example, [5] discusses how MPC retains 
the benefits of optimal control but avoids 
the curse of dimensionality of dynamic 
programming, handles constraints very 
easily, and although model based, can 
be easily integrated with a model-learn-
ing algorithm. While commonplace in 
the chemical process industry, with the 
substantial recent increase in compu-
tation power available for embedded 
systems, MPC has been more widely 
adopted for the online planning of ro-
botic systems. Educational goals would 
be to point out the issues of picking a 
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good cost function for the optimal con-
trol, understanding modeling/abstrac-
tion approaches, creating good cost to 
go, deciding on the plan horizon length 
and time step (Ts), and computation and 
parallel implementations.

With models available, these MPC 
techniques integrate the data available 
through feedback of the current state. 
However, many of the problems of in-
terest have nonlinear dynamics that 
are difficult to model accurately. Thus, 
an interesting educational challenge is 
to provide the students with the skills 
necessary to determine how best to 
utilize the data beyond just using it for 
feedback, such as for learning models 
and/or control policies.

A recently developed course at the 
University of California, Berkeley, by 
S. Levine [12] is an exciting exemplar of 
a new class designed to achieve these 
objectives. It provides a good mix of 
model-based control and direct data-to-
decisions approaches. Reinforcement 
learning (RL) is discussed for model 
and policy learning. The benefits of 
deep RL techniques are also discussed 
(avoids the need for manual crafting—
the features in the representation 
are self-learned from the data), which 
are particularly useful for perception-
based feedback loops. The course 
touches on optimization-based control 
but has few details of these techniques 

as a control system. The ideal course 
would provide a more balanced per-
spective on the implications of clos-
ing the loop on the system. This could 
be accomplished by drawing on the 
known analysis of the model-based on-
line optimization for linear quadratic 
problems and then highlighting the 
limits of that analysis for more com-
plex systems, as would typically occur 
in a controls class.

Controls courses must provide a 
solid foundation, but they should also 
provide students with the tools neces-
sary to work with models if they exist, 
create (if possible) models in real time 
from the available data, and/or can 
yield good control policies if modeling 
not possible. It is likely that a deep fu-
sion of model- and data-based control 
techniques will be needed to solve the 
complex problems envisaged for the  
future, and the controls curriculum 
must evolve and expand to reflect that 
change. This change will likely require 
a tighter integration of the material cov-
ered in optimization-based control and 
reinforcement/deep learning classes, 
with a combined teaching effort between 
the two communities.
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Intelligence to Information

Reading the work of Ralph Hartley, Shannon said, was “an important influence on my life.” Not simply on his 
research or his studies: Shannon spent much of his life working with the conceptual tools that Hartley built, 

and for the better part of his life, much of his public identity—“Claude Shannon, Father of Information Theory” 
—was bound up in having been the one who extended Hartley’s ideas far beyond what Hartley, or anyone, could 
have imagined. Aside from George Boole, that obscure logician, no one shaped Shannon’s thought more. In the 1939 
letter in which Shannon first laid out the study of communications that he would complete nine years later, he used 
Nyquist’s “intelligence.” By the time the work was finished, he used Hartley’s crisper term: “information.”

—Jimmy Soni and Rob Goodman, A Mind at Play: How Claude Shannon  
Invented the Information Age, Simon and Schuster, 2017, p. 130.


